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Two-dimensional dam break flow simulation
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SUMMARY

Numerical modelling of shallow water flow in two dimensions is presented in this work with the results
obtained in dam break tests. Free surface flow in channels can be described mathematically by the
shallow-water system of equations. These equations have been discretized using an approach based on
unstructured Delaunay triangles and applied to the simulation of two-dimensional dam break flows. A
cell centred finite volume method based on Roe’s approximate Riemann solver across the edges of the
cells is presented and the results are compared for first- and second-order accuracy. Special treatment of
the friction term has been adopted and will be described. The scheme is capable of handling complex flow
domains as shown in the simulation corresponding to the test cases proposed, i.e. that of a dam break
wave propagating into a 45° bend channel (UCL) and in a channel with a constriction (LNEC-IST).
Comparisons of experimental and numerical results are shown. Copyright © 2000 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

At present, classical methods and central difference schemes dominate the software products
for the shallow-water system of equations. Some years after their adoption for solving
problems in gas dynamics, upwind schemes have been successfully used for the solution of the
shallow-water equations, with similar advantages [1–5]. Historically, upwind schemes were
developed specifically for the solution of the Euler equations [6,7], but there is no reason why
the techniques involved cannot be applied for the solution of other systems of conservation
laws.

First-order and second-order schemes have been used to solve two-dimensional dam break
flows on structured meshes following central differences [8] and upwind flux difference

* Correspondence to: Departamento de Ciencia y Tecnologia de Materiales y Fluidos, Area de Mecánica de Fluidos,
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approaches [1]. More recently, first- [9,10] and second-order [11] upwind schemes on unstruc-
tured meshes have been presented for this kind of flow. It is conjectured that the main reason
for the relatively poor widespread of existing higher-order unstructured mesh schemes in the
past has been due to the difficulty in constructing extensions to higher-order accuracy
analogous to what has been done on structured meshes.

Upwind schemes are originally based on a piecewise constant representation of the solution
on a cell and a one-dimensional Riemann solver across each edge of the cell. There are two
main approaches for constructing positive higher-order schemes [6,12], which correspond to
either flux or slope limiting. In this work, slope limiter functions are formulated directly, which
gives quite a significant improvement when an unstructured finite volume scheme is applied
with more ambitious reconstructions [13]. For a theoretical study on the convergence of
higher-order upwind schemes on unstructured grids see Wierse [14].

Besides this, discussion is open as to whether the schemes based on one-dimensional
Riemann solvers are the most suitable choice for multi-dimensional calculations because they
seem inadequate for capturing two-dimensional flow features. Multi-dimensional upwinding
techniques [15–18] have demonstrated to give very good resolution for dam break problems in
genuinely two-dimensional domains [19], but their implementation is more complicated.

In this paper, the performance of an upwind technique for two-dimensional shallow-water
flows is described in first- and second-order accuracy. In the next sections, the basis of the
numerical method is stated; higher-order spatial accuracy is derived through the use of
piecewise linear solution reconstruction over each element; special treatment of the friction
term at the walls of the channel is described and the application to the simulation of
two-dimensional dam break flows is presented.

2. GOVERNING EQUATIONS

Depth averaging of the free surface flow equations under the shallow-water hypothesis leads
to a common version of the two-dimensional shallow-water equations, which in conservative
form [20,21] is
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where U represents the vector of conserved variables (h is the depth of water, hu and h6 are
unit discharges along the co-ordinate directions), F and G are the fluxes of the conserved
variables across the edges of a control volume. They consist of the convective fluxes together
with the hydrostatic pressure gradients. H is the source term.

In addition, u and 6 are the velocities in the x- and y-directions respectively, g is the
acceleration due to the gravity, S0x

and S0y
are the bed slopes, and Sfx

and Sfy
are the friction

terms in the x- and y-directions respectively. For the friction term, the Manning equation [22]
has been used with some modifications and will be described in Section 4.

For the present applications other source terms, apart from wall and bottom friction and
weight of the fluid, have been neglected. Hence, no turbulent dissipation terms, Coriolis or
wind effect are present in the equations.

Despite the apparent restricted application of this mathematical model of the free surface
flow, it has been widely used for numerical simulations of hydraulic phenomena [21]. Dam
break induced flows in particular are one example of common application. Even though the
hydraulic hypothesis is violated at the dam position during dam failure and at the shock front
during its propagation, the shallow-water model still remains valid as an average description
of the main features of this kind of transient flow.

In the next section, the numerical techniques applied to solve Equation (1) are described.

3. NUMERICAL MODEL

3.1. First-order upwind method

A cell centred finite volume method is formulated for Equation (1) over a triangular control
volume, where the dependent variables of the system are represented as piecewise constants.
The integral form of Equation (1) for a fixed area S is
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and applying the divergence theorem to the second integral, you obtain
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where C is the boundary of the area S, and n is the outward unitary normal vector. Given a
computational mesh defined by the cells (volumes) of area Si, where i is the index associated
with the centroid of the cell (see Figure 1) in which the cellwise constant values of U are stored,
Equation (4) can be represented by

dUi

dt
Si+

7
Ci

(F, G) ·n dC=HiSi (5)

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 35–57



P. BRUFAU AND P. GARCIA-NAVARRO38

where a mesh fixed in time is assumed. The contour integral is approached via a mid-point
rule, i.e. a numerical flux is defined at the mid-point of each edge, giving

7
Ci

(F, G) ·n dC= %
NE

k=1

(F, G)*wk
·nwk

dCwk
(6)

where wk represents the index of edge k of the cell (see Figure 1), NE is the total number of
edges in the cell (NE=3 for triangles). The vector nwk

is the unit outward normal, dCwk
is the

length of the side, and (F, G)*wk
is the numerical flux tensor.

The evaluation of the numerical flux in Equation (6) is based on the Riemann problem
defined by the conditions on the left and right sides of the cell edges, as in first-order method
of extrapolation of variables scheme [23]. An important feature of the one-dimensional upwind
schemes for non-linear systems of equations is exploited here. This is the definition of the
approximated flux Jacobian, A0 i+1/2 [7], constructed at the edges of the cells. Once this matrix
has been defined, the numerical flux across the interface i+1

2 between states i on the left (L)
and i+1 on the right (R) of a cell in a one-dimensional domain is

F*i+1/2=
1
2

[Fi+1+Fi− �A0 i+1/2�(Ui+1−Ui)]=
1
2

[FR+FL− �A0 RL�(UR−UL)] (7)

The two-dimensional numerical upwind flux in Equation (6) is obtained by applying the
expression (7) in a one-dimensional form to each edge wk of the computational cell. The
one-dimensional philosophy is followed along the normal direction to the cell walls, making
use of the normal numerical fluxes, so that

(F, G)* ·n=
1
2

[(F, G)R ·n+ (F, G)L ·n− �A0 RL�(UR−UL)] (8)

Figure 1. Details of the cells.
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Here k=1, . . . , NE. R and L denote the right and the left states respectively at the wk edge,
A0 RL represents the approximate Jacobian of the normal flux. Note that subscript wk will be
omitted for the sake of clarity and the following discussion is referred to the cell side wk.

The A0 RL matrix must satisfy the following conditions:

(I) A0 RL depends only on the UR and UL states,
(II) (FR−FL)=A0 RL(UR−UL),

(III) A0 RL has real and distinct eigenvalues and a complete set of eigenvectors,
(IV) A0 RL=A(UR)=A(UL) if UR=UL,

where

A=
((F, G)
(U
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As suggested by Roe [7], the matrix A0 RL has the same shape as A but is evaluated at an
average state given by the quantities ũ= (ũ, 6̃) and c̃, which must be calculated according to
the matrix properties. The eigenvalues of A0 RL have the form
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Once the eigenvalues and eigenvectors are calculated, the difference in the vector U across a
grid edge is decomposed on the eigenvectors basis as

dU=UR−UL= %
3
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m (12)

where
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Enforcing the second condition of matrix A0 RL, the following expressions for ũ, 6̃ and c̃ can be
obtained:

ũ=

hRuR+
hLuL


hR+
hL

, 6̃=

hR6R+
hL6L


hR+
hL

, c̃=
'g

2
(hR+hL) (14)

Once the average quantities have been constructed, expression (8) provides the numerical flux
normal to each edge of the computational cells. We can now substitute it into Equation (6), so
that Equation (5) can be written as

dUi
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which is an ordinary differential equation and can be integrated by standard methods, such as
a forward Euler time integration procedure,

Ui
n+1=Ui
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The stability criterion adopted has followed the usual in explicit finite volumes [24]

dt5min
� dij

2(
u2+62+c)ij

n
(17)

where dij is the distance between the centroid of the cell i and its neighbours j.

3.2. Second order extension

A first-order-accurate upwind scheme has been constructed computing the fluxes at each face
from the adjacent piecewise constant values of the variables U in each volume. In order to
obtain higher-order spatial accuracy, the initial data at each time step are pre-processed in the
form

UL[UL+rLRDL, UR[UR+rRLDR (18)

where rLR is the vector from the centroid of the cell L to the mid-point of the edge LR (see
Figure 2). The new left and right values of the variables are two interpolated values
constructed from the initial constant values and situated at the mid-point of the edge from the
centroids of elements L and R respectively.

The representation of the initial conditions for the Riemann solver is now different since it
contains information relative to the neighbour cells by means of the gradient operator D.

The construction of the gradient operator D is of crucial importance to the numerical
scheme. It has to be conservative and guarantee positivity [13,14]. The limited central
difference (LCD) approach, the compressive limiter of Durlofsky et al. [25] and the maximum
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Figure 2. Details of the cells.

limiter gradient (MLG) operator, described in detail here, have been studied following Batten
et al.’s previous work [13]. Only results with the MLG operator are going to be shown in this
work.

The procedure for the non-oscillatory reconstructions of the initial piecewise constant values
can be extended to an arbitrary cell shape; here triangles are considered. Given the three
centroids A, B and C of the adjacent cells to one of the triangles (with centroid O), as shown
in Figure 3, a unique gradient plane can be defined from

D=
�−m2/m3

−m1/m3

�
(19)

where mk (k=1, 2, 3) is the k component of the normal vector to the plane (ABC), given by

Figure 3. Details of the cells.
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The algorithm implemented is the following:

Construction of the operators Di, i=1, 2, 3, 4.
To determine the gradient operator D on an unstructured triangular mesh, at least four
gradient planes through a triangle, given the centroid of the triangle itself and the centroids of
the three adjacent triangles, which have one edge in common, can be defined (see Figure 3)

D1=�(123), D2=�(ABO), D3=�(BCO), D4=�(CAO)

where �(ABO) defines the unique gradient plane through the centroids A, B and O. Limiting
condition over the gradient operators Di by a scalar ai such that Di=ai ·Di, where 05a51,
and a is maximized subject to the constraint that the solution causes no overshoots or
undershoots at cell interfaces. This is imposed to prevent non-physical extreme. The MLG
algorithm moderates all gradients.
Once we assure none of the Di can cause overshoots/undershoots, the operator Di that gives
maximum compression (�Di� maximum) is selected. This limiter automatically selects a zero
gradient at points of extreme. It has been demonstrated that the MLG slope limiter corre-
sponds to the one-dimensional Superbee limiter of Roe [26].

Second-order spatial accuracy is obtained proceeding as has been explained before, with the
slope limiter on the variables using the MLG gradient operator in order to define UL and UR

in Equations (8) and (16). Second-order accuracy in time can be achieved from Equation (15)
updating the variables in two steps. In the first step, variables are computed at time level
tn+1/2= tn+Dt/2 from the extrapolated variables at time tn. With these values, the numerical
flux and the source terms are evaluated again to update the variables at time tn+1,
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3.3. Source terms

Many two-dimensional depth-averaged models include only friction at the bottom. Specifi-
cally, models that assume vertical channel side-walls and use free-slip boundary conditions do
not account for the friction at the walls. Neglecting this effect, open channel flow would likely
show a marked variation in water depth [27] from the one measured experimentally.

Evaluation of the friction slope that quantifies the energy loss at the side-walls of the
channel is required. It is common to use a uniform flow law, Manning or Chezy formulae, to
calculate this term. However, these laws were developed for one-dimensional flow and must be
extended and properly incorporated to two-dimensional equations.
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Manning’s formula used in one-dimensional shallow-water models is expressed in the form

Sf=
n2Q �Q �
A2R4/3 (22)

where n is the Manning coefficient and R=A/P is the hydraulic radius, which depends on the
wetted perimeter P. For a rectangular channel P=b+2h and for an irregular basin P=b.

A distinction must be made between an arbitrary channel cross-section and a cross-section
with vertical walls (see Figure 4). Most two-dimensional models assume vertical walls and
free-slip wall boundary conditions for rectangular channels, while the equations used to
compute the friction term are based on irregular cross-sections. To correct this inconsistency,
the friction slope equation has been modified here to reflect the vertical side-wall assumption.
Basically, the modification ensures that the entire wetted perimeter (bottom width and
side-walls) is accounted for.

For an arbitrary cross-section, the wetted perimeter in a cell is equal to the bottom width b
(see Figure 4), so that the hydraulic radius adopts the form R=h, the water depth. In this
case, the two-dimensional friction terms are written in the form [28–31]

Sfx
=

n2u
u2+62

h4/3 , Sfy
=

n26
u2+62

h4/3 (23)

When these formulae are applied to rectangular channels with free-slip wall boundary
conditions, only bottom friction is taken into account, neglecting the side-walls friction (see
Figure 4).

Working with structured meshes, Molls et al. [27] modified the friction slope equation
distributing the side-wall friction across the width of the channel. Every cell augments its
wetted area in the form Si+ (h1+hN)/(N−1), where N is the number of computational nodes
across the channel, and h1 and hN are the water depths at the channel side-walls. Moreover, in
Equation (23) a weighting factor is included that accounts for side-wall friction and can be
viewed as a correction to the Manning coefficient n.

On unstructured meshes, there is no row of cells numbered from 1 to N in a cross-section
and the above modification is not valid. The idea is to include the effect of the side-wall

Figure 4. Irregular and rectangular cross sections.
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friction in the computation of the total friction term in each cell, depending on the number of
edges that form part of a vertical solid wall and computing the real wetted area (bottom and
wall; see Figure 5).

Two different types of cells are distinguished: internal cells, where all the edges are adjacent
to another cell; and boundary cells, where at least one of the edges is a vertical wall. For
internal cells the procedure is the usual, with the Manning coefficient of the bottom, nb,

Sfx
=

nb
2u
u2+62

h4/3 , Sfy
=

nb
26
u2+62

h4/3 (24)

For boundary cells, the wetted area must be specified. First of all, the total number of edges
in a cell, which are part of solid vertical walls, is needed (SW N). The wetted area is Si+ lwk

h
(see Figure 5), where Si is the area of the cell, lwk

is the length of the solid wall edge involved
in this cell, and h is the depth of the water.

Equation (23) can be expressed in the form

Sfx
=u
u2+62�n2/3

R
�4/3

(25)

which gives the following expression for the friction term:
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�4/3
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SW N
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Si
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with nw being the Manning coefficient relative to the vertical walls. The Manning coefficients
for bottom and walls, nb and nw, used in the computations have been supplied by the
experimental tests.

Figure 5. Wetted perimeter on a cell for a rectangular cross section.
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Comparisons have been carried out using the standard friction slope formula neglecting the
side-walls effect (23) and the modified law (26). Using Equation (26), numerical results agreed
closer to the experimental data than with using the standard equation, better solving the
arrival time of the reflected water from the walls. This modification works well with complex
flows, such as curved channels and channels with contractions as will be shown in the
numerical results.

3.4. Boundary conditions

The idea of using a Riemann solver to calculate the flux at the face of a cell can be used in
the description of boundary conditions. The variables are stored at the centre of each cell and
the boundary conditions are applied through the flux across the edges. The imposed conditions
at the boundaries combined with equations obtained from characteristics theory give sufficient
information for the boundary flux to be calculated.

We have applied characteristics theory [24] in two dimensions, the procedure consisting of
the approximation of the bi-characteristics that pass through the boundary points. Assuming
that we can neglect the source terms and that the flux has a frontal behaviour, we arrive at the
following compatibility relations:

D
Dt

(u·n92c)=0 (27)

d

dt
(u·t)=0 (28)

where t is the tangential vector,

u·n=unx+6ny, u·t=6nx−uny (29)

and

D
Dt

=
(

(t
+ (u9cnx)

(

(x
+ (69cny)

(

(y
(30)

d

dt
=
(

(t
+u

(

(x
+6

(

(y
(31)

Sometimes it is not necessary to use all the equations, depending on the boundary conditions
imposed and the number being determined by the value of the normal velocity through the
boundary. The possibilities are

(I) Supercritical inflow: u·n5−c [all the variables must be imposed and no numerical
boundary conditions are needed.

(II) Sub-critical inflow: −cBu·n50[ two variables must be imposed and one of the two
expressions included in Equation (27) is used.
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(III) Supercritical outflow: u·n\c [none of the variables must be imposed and Equations
(27) and (28) are used.

(IV) Sub-critical outflow: 0Bu·n5c [one variable must be imposed and Equation (27) is
used.

For instance, when the boundary is a solid wall, the normal velocity is zero, so it is necessary
to use Equations (27) and (28), imposing the condition u·n=0.

Once boundary conditions have been imposed on the cell edges and have been combined
with the appropriate compatibility relations, the normal flux across these edges is calculated
and the contribution to the updating of the variables at the centre of the cell is obtained.

A useful remark must be done about the treatment of boundary conditions in the numerical
modelling. Only first-order accuracy is achieved at the boundary cells due to the approxima-
tions assumed, even when a second-order scheme is applied. This opens a new path to study
how boundary conditions treatment could be improved to obtain better accuracy on the
results.

4. NUMERICAL RESULTS

Results obtained with both first- and second-order approximations for the experimental test
cases proposed by Professor Zech (Civil Engineering Department, UCL, Belgium) and Dr
Bento (Hydraulic Engineering Department, LNEC and IST, Lisbon) from the Working Group
on Dam Break Flow Modelling, are going to be presented.

Experimental data obtained on a laboratory test facility for dam break unsteady flows will
be compared with computational results obtained with first- and second-order accuracy
numerical schemes on unstructured Delaunay triangular meshes. Initially, dry and wet bed
tests have been carried out. Only results on wet bed cases, presenting more differences from
experimental results than dry bed ones, are going to be shown. In general, flow over dry bed
progresses with a smooth front wave and does not generate sharp fronts.

4.1. 45° bend channel test (UCL)

The test to be studied combines a square-shaped upstream reservoir and a 45° bend channel
(see Figure 6). The flow will be essentially two-dimensional in the reservoir and at the angle
between the two straight reaches of the 45° bend channel. Two features of the dam break
resulting flow are of special interest: the damping effect of the corner, and the upstream
moving hydraulic jump, which is formed by reflection at the corner. The multiple reflections
of the expansion wave in the reservoir will also offer an opportunity to test the two-
dimensional capabilities of the numerical models.

The channel is made of 4.25 and 4.15 m long and 0.495 m wide rectilinear reaches connected
at 45° angle by an element. There is no slope in the channel. A gate connects this 45° bend
channel to a 2.44×2.39 m2 reservoir.

The initial conditions are water at rest with the free surface 0.25 m above the bed level in the
upstream reservoir and 0.01 m water depth in the channel. All boundaries are solid non-slip
walls except the outlet, which is considered free (supercritical). The Manning coefficient for the
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bed is nb=0.0095 and nw=0.0195 for the walls. The number of elements used in the mesh is
15397.

Nine gauging points were used in the laboratory to measure water level in time. Their
locations are shown in Figure 6. The measurements at these stations are compared with the
numerical results and displayed in Figures 7 and 8. Both schemes give satisfactory solutions;
first-order gives a smoother solution, and the reflections at the walls of the channel are better
captured with second-order.

We would like to remark the improvement achieved taking into account the vertical channel
side-walls when evaluating the friction term. Figure 7 shows the differences on the results when
the effect of the side-walls friction is neglected (no wall friction) or not (wall friction). Figure
7(left) represents the water depth evolution at point P3, and only if the wall friction is

Figure 6. Plane view of the channel.

Figure 7. Water depth history at points P3 (left) and P5 (right).
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considered the reflected front is captured at the correct time, otherwise it is delayed 3 s. At
point P5 [Figure 7(right)] a better fit to the measurements has been noticed. From now on, the
side-walls friction has been included in all the numerical computations.

Comparison between experimental data and numerical results obtained with first- and
second-order upwind schemes are shown. Figure 8 represents the time evolution of the depth
of water in nine gauging points along the structure (see Figure 6). In Figure 9 the water level
contour along the channel is described at times 3 and 18 s. Finally, Figure 10 represents the
snapshots of the free surface at the same time.

In general, the figures indicate a good performance of the two numerical schemes. Experi-
mental data in this test show a remarkable oscillatory character. This behaviour cannot be
modelled by means of a shallow water approach. The results from the second-order numerical
scheme present less numerical diffusion than the ones provided by the first-order method but
they still do not achieve a full agreement. The arrival times of the main shock fronts are well
captured by both methods. Some differences are noticeable in P2, P3 and P4 as the reflected

Figure 8. Water depth history at points (a) P1, (b) P2, (c) P3, (d) P4, (e) P5, (f) P6, (g) P7, (h) P8, and
(i) P9.
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Figure 8 (Continued)
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Figure 9. Contour of water level along the channel at time t=3 s (top) and t=18 s (bottom).
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Figure 10. Free surface at time t=3 s (top) and t=18 s (bottom).

Figure 11. Plane view of the channel.
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shock front celerity is concerned. This may be attributed to the treatment of the boundary
conditions. The simplifications made in the numerical implementation of the characteristics
theory in two-dimensional at the boundaries may be responsible for this lack of accuracy.

4.2. Channel with a constriction (LNEC-IST)

The entire channel, with a zero longitudinal slope, is 19.3 m long and its rectangular section is
0.5 m wide. The gate is located at 6.1 m from the upstream section of the channel. The
upstream channel is also 0.5 m wide. The beginning of the constriction is located at 7.7 m
downstream of the gate. The constriction is 1 m long and 0.1 m wide. The transition wall
makes a 45° angle with the channel walls (see Figure 11).

The test was conducted with initial still water. The initial water depths are 0.397 m and
0.25 m. Boundary conditions are the same specified in the first test. The Manning coefficient

Figure 12. (a) Zoom on the mesh at the constriction, water depth history (b) before the constriction, (c)
inside the constriction and (d) after the constriction.
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Figure 13. Contour of water level along the channel at time t=5 s (top) and t=12 s (bottom).

for the bottom and the walls is nb=nw=0.01 because all the structure was constructed with
the same material.

The mesh uses 14207 cells. A zoom on the constriction is shown in Figure 12(a). The front
advances and is reflected when it arrives at the constriction. Experimental results are well
reproduced by both numerical models. The set of the results are plotted. In Figure 12, the time
evolution of the depth of water in different gauging points is represented. Both schemes give
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a similar resolution because the mesh is very fine. In both cases, the numerical results predict
the water surface lying on an average level over the measured one. This is a consequence of the
limitations of the original differential equations that we are solving.

Figure 13 presents the contour level of water at different times, 5 s and 12 s respectively. In
Figure 14 the velocity (ten times its real value) is represented at the constriction. Finally, the
free surface is plotted along the channel in Figure 15 at the time specified.

Figure 14. Zoom at the constriction showing the velocity vector at time t=5 s (top) and t=12 s
(bottom).
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Figure 15. Free surface at time t=5 s (top) and t=12 s (bottom).

5. CONCLUSIONS

An upwind scheme for the solution of the two-dimensional shallow-water equations has been
applied in first- and second-order accuracy for dam break modelling. The limiter is defined
using a multi-dimensional approach following results developed in the context of gas dynamics
[13], instead of generalizations of one-dimensional upwind techniques.
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The numerical results have been validated by comparison with experimental data in two test
cases involving dam break flows. Differences on the results obtained with first- and second-
order accuracy do not follow a clear tendency and it is difficult to establish the superiority of
the second-order. In the first test case presented, that of a 45° bend channel, first- and
second-order results fail to reproduce the arrival times of the reflected wave (P2 and P3 gauge
points). This suggests that the reflection at the corner may require an improved numerical
treatment. As future work, the accuracy at boundaries could be an important item to be
analysed. In the second test case presented no differences were appreciated since the grid use
is very fine.

Modification of the source term to include the vertical side-walls friction effect has supposed
a great improvement for the correct prediction of the reflected front. Without using this
modified law, the reflected front was detected several seconds after the experimental data.
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